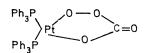
Some Novel Peroxycarbonate Complexes of Platinum(II)

By P. J. HAYWARD, D. M. BLAKE, and C. J. NYMAN*

(Department of Chemistry, Washington State University, Pullman, Washington, 99163)


and G. WILKINSON

(Department of Chemistry, Imperial College, London, S.W.7)

Summary Unsaturated molecules will add to peroxobis-(triphenylphosphine) platinum(II) to give new peroxycomplexes.

DURING the preparation of carbonato(bistriphenylphosphine) platinum(II),¹ an initial "impure" product was reported which differed in i.r. spectrum and m.p. from the final recrystallized sample. This "impure" product has now been shown to be a peroxycarbonato-species and has been characterized by its i.r. spectrum, chemical properties, and by elemental analysis.

When carbon dioxide and oxygen are bubbled into a benzene solution of tetrakis(triphenylphosphine)platinum(0), the initial product obtained melts at $143-145^{\circ}$ and shows i.r. bands at 1678, 1250, 815, and 778 cm.⁻¹, in addition to the phosphine bands. Recrystallization from benzene-methylene chloride in an oxygen atmosphere yields the same product, but in the presence of excess triphenylphosphine under a nitrogen atmosphere, the compound is reduced to the carbonato-complex as previously reported. The i.r. spectrum of the latter shows bands at 1684, 1180, and 815 cm.⁻¹. The additional band in the former at 778 cm.⁻¹ is assigned to, essentially, ν (O–O) of a peroxygrouping and the compound is thought to have the structure:

similar to that determined by Ugo *et al.*² for the compound peroxy(acetone)bis(triphenylphosphine)platinum(II), $(Ph_3P)_2PtO_2(acetone)$. In this compound, the band at 855 cm.⁻¹ may be assigned to $\nu(O-O)$ (although Ugo tentatively assigned this to a C-O vibration) since on passing nitrogen or hydrogen through a solution of the compound the band disappears.³

In the corresponding bis(diphenylphosphino)ethane (diphos) complexes, the C=O stretch shifts from 1627 to Reduction with triphenylphosphine gives a compound (Ph₃P)₂PtS₂CO, which has no i.r. band at 800 cm.⁻¹ and is identical to the compound obtained by Fackler⁴ by decomposition of xanthate complexes. This compound may also

						I.r. spectrum (cm. ⁻¹)		
Compound			Colour	m.p.	v(C=O)	v(C-O) + (O-C=O)	ν(́Ο–Ο)	ν(M–O)
$(Ph_3P)_2Pt \cdot O \cdot CO_3 \ldots$	•••	••	White	143—145°	1678 vs	1250 s	778 m	558 vs 364 vs
(Ph ₃ P) ₂ Pt·CO ₃	••	••	White	$203-205^{\circ}$	1685 vs	1185 s		c
(diphos)Pt·O·ČO ₃	•••	••	White	162—164°	1627 vs	1380 vs	835 m	} 537 vs } 357 s
(diphos)Pt·CO ₃	• •	••	White	$>\!200^\circ$	1685 vs	1190 s		Ć C
$(Ph_3P)_2PtO_2CS_2$	••	••	Orange	$155 - 165^{\circ}$	1560 vsa	b	800 m	с
$(Ph_3P)_2PtS_2CO$	••	••	White or pale yellow	265—267°	$\frac{1680}{1615}$ vs	b		с

TABLE

^a Assignment uncertain.

^b No band observed.

° No spectrum obtained in this region.

1685 cm.⁻¹ on reduction with triphenylphosphine, although an analytically pure sample of the carbonato-species has not yet been obtained.

When CS₂ is added to a solution of peroxobis(triphenylphosphine)platinum(II), a bright orange crystalline precipitate is obtained which analyses as $(Ph_3P)_2PtO_2 \cdot CS_2$. The compound, monomeric in chloroform, has a strong i.r. band at 1560 cm.⁻¹ which cannot be satisfactorily assigned either to a C=S or C=O stretch, and another strong band at 800 cm.⁻¹ which may be a ν (O-O) since it disappears on reduction. Exact structural determination of this compound must await an X-ray analysis but it appears, chemically, to be analogous to the compound (Ph₃P)₂PtOCO₃.

be obtained by photochemical decomposition of oxalatobis-(triphenylphosphine) platinum(II) in the presence of CS₂. There is evidence that both CO and CO₂ are produced by this reaction as expected.

All the peroxy-compounds liberated iodine from acid potassium iodide solution, (although the acetone complex did so only with difficulty); under the same conditions, no reaction was observed with the reduced compounds.

Physical data for the complexes are listed in the Table. Analytical results for all the compounds [except (diphos) PtCO₃ as mentioned above] were satisfactory.

(Received, June 27th, 1969; Com. 929.)

- ¹ C. J. Nyman, C. E. Wymore, and G. Wilkinson, J. Chem. Soc. (A), 1968, 561.
 ² R. Ugo, F. Conti, S. Cenini, R. Mason, and G. B. Robertson, Chem. Comm., 1968, 1498.
 ³ P. J. Hayward and C. J. Nyman, unpublished work.
 ⁴ J. P. Fackler, jun., W. C. Seidal, and J. A. Fetchin, J. Amer. Chem. Soc., 1968, 90, 2707.